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Brief overview of classic machine 
learning pipelines

Traditional machine learning pipelines usually 
consist of four separate steps: 

1. PRE-PROCESSING 

Data is mapped from a noisy, irregular, and 
sometimes high dimensional space onto a 
cleaner, more regular, and lower dimensional 
space. 

2. HANDCRAFT FEATURE EXTRACTION 

Distinctive features (represented as vectors 
or tensors) are manually formulated and 
engineered from the input data. These 
features should be consistent, robust, and 
preserve information while simultaneously 
removing redundancy. 

3. POST-PROCESSING

The features, which together form a feature 
space, are sometimes post-processed to 
achieve further dimensionality reduction or 
expansion. 

4. CLASSIFICATION

The result of the first three steps is then 
given to a classification/regression algorithm. 
Input is mapped onto a discrete domain 
(class labels) and hyper-planes split the 
feature space into different regions, each 
belonging to different classes. 

Some of the advantages of this traditional 
machine learning pipeline are as follows: 

• they are (usually) fast to train and back test

• feature extraction can be robustly 
designed if the underlying physics from 
which the samples were generated is 
known (example: Mel-frequency cepstral 
coefficients (MFCC) features used in 
speech recognition1)

• hand crafted feature extraction and 
engineering can sometimes help in 
understanding the failure of the system, 
thus facilitating explainability

This traditional approach does come with 
limitations, though, as the steps mentioned 
above are clearly not independent from  
each other. 



2

October 2020 | Mesirow Currency Management | Deep neural networks for FX prediction

A well performing machine learning model is dependent on strong classifiers (step 4), which requires a well-designed feature 
extraction (step 2). If either of these steps fail, it can deteriorate the overall performance. Therefore, to avoid this issue, steps 
1 to 4 of any machine learning pipeline should be somehow simultaneously optimised. 

Also, these models usually assume that the input samples are independent and identically distributed (IID)2. When attempting 
to predict financial data trends, however, non-IID input samples prove difficult to structure and model, so the task of 
simultaneously designing a robust feature extraction algorithm and avoiding class over-representation is extremely difficult. 

One solution to make the feature extraction step more robust would be to link outputs from several different algorithms. 
Unfortunately, this approach also leaves us with a potential problem: when the number of feature vectors is much higher 
than the number of samples, this concatenation can result in an extremely high dimensional space in which there will not 
be enough samples to represent each class. This is known as the curse of dimensionality3 and can result in poor predictive 
performance.

Deep neural networks 

Neural networks belong to a category of machine learning algorithms that attempt to find structure and model input data by 
learning parameters embedded within a set of composite non-linear functions. 

Neural networks are not totally new machine learning techniques, and most of their well-known architectures can be traced 
back to research in the 80s and 90s: recurrent neural networks (initiated) in 19824, convolutional neural networks in 19955 
and long short-term memory networks (LSTM) in 19976. 

What makes these techniques widely popular in recent machine learning pipeline design are two key factors: availability of a 
large amount of open source data, and accessibility to fast and cheap parallelised computational power.

Neural networks superiority

Neural networks have many 
advantages when compared to other 
machine learning algorithms. One 
of the most important features of 
the neural network is their closed-
form solution for feature extraction 
and classification. This resolves the 
difficult problem of first formulating a 
feature extraction algorithm and then 
optimising a compatible classifier for it. 
As Shown in Figure 1, neural networks 
do both tasks simultaneously, and 
these learned features can even be 
transferred to other (not necessarily 
similar) tasks, a process known as 
transfer learning7. 

FIGURE 1: CLASSIC MACHINE LEARNING PIPELINES (TOP) VS. DEEP 

LEARNING-BASED APPROACHES
While classic machine learning relied on an independent handcrafted feature extraction 
and classification, deep learning paradigms encapsulate feature extraction and 
classification inside a simultaneous process.

Source: Mesirow Financial
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Thanks to their non-linearity, neural 
networks can learn more complex 
patterns from the data, and temporal 
dependencies between samples 
can also be learned via recurrent 
or convolutional architectures. 
As an example, Figure 2 shows a 
convolutional neural network which 
is capable of extracting spatial 
information from input images via 
learning various filters and, finally, 
performing classification through 
dense layers.

General challenges in training  

neural networks

Neural networks require much 
more computational power to train 
than traditional machine learning 
algorithms. A neural network can very 
easily have thousands of trainable 
parameters, and to optimise these 
parameters over a high dimensional 
space, a substantial amount of data is 
usually needed.

Neural networks also have several 
hyper-parameters, which significantly 
influence their performance. These 
cover a wide range of parameters, 
from the number of hidden layers and 
neurons per layer, to learning rate and 
optimisation parameters. Neural network architecture search, a process that can automatically search for the best network 
architecture and hyper-parameter setting, can be a possible solution but is still an ongoing research problem.8,9,10

Although underfitting is not often problematic, due to the high complexity of these networks, one problem that could 
result (and needs to be avoided) during model design is overfitting (Figure 3). This shows itself in a large gap between train, 
validation, and test performance and in drastic fluctuations in output (high variance) when there is any small alteration to the 
input data.

Challenges in training neural networks over financial data

Non-stationary and non-IID inputs (e.g. financial time series) can be problematic for training. Non-stationarity causes 
significant statistical differences between the train, validation, and test sets. For complex models, which are already vulnerable 
to input variations this can, of course, cause a significant drop in performance during the live prediction.

One solution to this is to limit the number of training samples by using more recent data points (in the hopes of achieving 
higher stationarity while simultaneously capturing recent market trends), but this undermines the necessity of incorporating a 
substantial amount of data in order to effectively train the neural networks. 

FIGURE 2: A SIMPLE CONVOLUTIONAL NEURAL NETWORK APPLIED FOR AN 

IMAGE CLASSIFICATION TASK
The input data is passed through several convolutional layers, which capture spatial 
information. Their output is then given to dense neural network layers to perform 
dimensionality reduction and classification.

Source: Mesirow Financial

FIGURE 3: UNDERFITTING VS. OVERFITTING
Failure to properly model input data (due to low model complexity and sometimes, class 
over-representation within the training data) increases bias and results in underfitting.

On the other hand, models that are too complex can cause high variance, low 
generalisation capability, and can cause the model to overfit. Ideally, there should be a 
balance between bias and variance3, which is a fundamental challenge in machine learning.

Source: Mesirow Financial
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In short, using too many training samples can result in class over-representation, but using too few can cause the neural 
network model to overfit. Hence, the challenge of using neural networks to their highest potential over a complex task can 
sometimes force quantitative researchers to discard neural networks completely and utilise old-fashioned solutions instead. 

Designing a classification model over financial data relies on first labelling the samples, which could be quite challenging. Such 
data labelling should perfectly represent immediate market trends for each sample. Only utilising immediate next samples for 
label assignment can result in high class overlap as in a short forward-looking window, financial series tend to act as random 
walk. However, a long-term forward-looking window for labelling can cause mid-term losses or a missing out on profit-making 
opportunities. Ideally, a financial data labelling strategy should consider all of these.

Our neural network-based solution

The neural network models used in Mesirow Currency Management’s alpha strategies use historical daily spot FX rates from 
30 currency pairs as the only input to the network; implemented as a binary classifier, the models learn to label each sample 
into going long or short. All the models are back tested over a period of 16 years.

During model development, we considered the limitations of classic machine learning techniques and challenges in utilising 
neural networks over financial time series and addressed those issues (overfitting, hyper-parameter optimisation, stationarity) 
in the design of our deep neural network strategy. 

Network architectures

Our networks are based on three main 
architectures: 

1. Convolutional

2. Recurrent

3. Convolutional Recurrent (or Mixture)

Convolutional networks model the 
temporal dependencies by learning 
filters which are convolved with 
the input data. An example of this 
approach is shown in Figure 4.

The financial data samples are 
intrinsically temporally dependent. 
Such dependency can be modelled 
through defining a (hidden) state 
space, which stores information about previous samples (observations). As shown in Figure 5, recurrent neural networks can 
learn from past data samples and generate this state space during their training process. 

The recurrent architecture models the underlying temporal dependencies between the samples by propagating the neural 
hidden states. The recurrent units are implemented as simple recurrent layers, long short-term memory networks (LSTM)6 and 
gated recurrent units (GRUs)11. The choice of recurrent layers is determined fully automatically from a separate optimisation 
procedure. 

Finally, the Mixture architecture utilises the convolutional filters to smooth out, denoise, and simplify the input data by making 
important features more prominent; the outputs of these convolutional layers are then given to a recurrent neural network to 
capture the temporal trends, as depicted in Figure 6.

FIGURE 4: A CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE OVER  

FX DATA 
Given a look-back window size T, data from multiple N currencies can be arranged as 
tensors, which are given to several convolutional layers to capture temporal dependencies. 
After flattening their outputs, the filtered data is fed into several dense layers for 
dimensionality reduction and final classification. The output probability score is used to 
determine the label.

Source: Mesirow Financial
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Stationarity vs. memory preservation

One approach to provide stationary 
input data is to compute the first 
order differencing. This, however, 
can completely remove the temporal 
dependencies (or memory) between 
the input samples, which is extremely 
informative when designing predictive 
models. Therefore, there should be 
a trade-off between stationarity and 
memory preservation.

For our models, stationarity is 
maintained using a controlled adaptive 
fractional differencing procedure12 
and memorisation is achieved 
by incorporating recurrent and 
convolutional neural architectures. 

Underfitting vs. overfitting

While underfitting is easily avoided 
by discarding models with low train 
accuracy, extra care has been taken 
to reduce the risk of overfitting. Each 
of our models can easily have tens of 
thousands of parameters, and a robust 
validation step is embedded within the 
network training process in order to 
avoid overfitting. This is achieved by 
incorporating regularisation methods, 
adding spatial and temporal dropout 
layers, early stopping procedures, and 
automated evaluation of validation loss 
and accuracy.

Data labelling and training one model 

per currency pair

Data labelling is performed in such a 
way to capture immediate data trends. 
To detect possible cross-currency 
correlations, the network inputs are 
tensors containing data from all 30 of 
the currency pairs traded. Each model 
performs prediction for one currency 
pair. Therefore, for each re-tuning 
interval we will have 30 deep neural 
networks optimised for the prediction 
task.

FIGURE 5: A RECURRENT NEURAL NETWORK USING LSTM RECURRENT 

BLOCKS 
Given a look-back window size, the data is chronologically ordered and is given to a deep 
recurrent neural network. This model learns the temporal dependencies within the data 
samples by conveying the network’s latent state. 

Source: Mesirow Financial

FIGURE 6: A CONVOLUTIONAL RECURRENT (MIXTURE) ARCHITECTURE.
During its training phase, the networks learn filters to smooth the data and extract 
features, while the outputs are given to a recurrent neural network (here shown as LSTM 
blocks) to learn temporal dependencies.

Source: Mesirow Financial
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Temporal sample weighting and model selection

The class over-representation vs. lack of data dilemma is addressed via a temporal sample weighting procedure. The sample 
weighting is also used during the model execution: the models only generate signals if they perform better than a minimal 
threshold when their inputs are temporally weighted. This step significantly improves the robustness of the system by 
avoiding trading when the market is very volatile. 

Hyper-parameter optimisation and implementation for back testing and live signalling

The model architectures are implemented in a decoupled way in our machine learning pipeline. This facilitates the utilisation 
of a separate hyper-parameter optimisation and neural architecture search. In other words, the model architecture constantly 
evolves based on the most recent FX rates.

All the computations are performed over our in-house GPU servers. The models are extensively back tested over a period 
of 16 years. To speed up these highly computationally demanding back testing operations, the process is parallelised. This 
reduces the tuning time (including architecture search and training) to less than 5 hours over all 30 currencies and enables 
daily model re-calibration. 

The generated signals are post-processed further to reduce the effects of carry and transaction costs, while reducing the 
absolute drawdown. The signal generated by our neural network model shows very low correlation with our other models, 
indicating it is a novel source of alpha and so improving the overall return of the system per unit of risk.

We have used TensorFlow v2.0 
as our machine learning pipeline 
framework. An example of the trained 
convolutional architectures to predict 
for one of our currency pairs is 
shown in Figure 7. Depending on the 
number of filters, the convolutional 
layers generate tensors with different 
dimensionalities. While the stability 
of these layers is controlled using 
the batch normalisation layers, the 
average and max pooling layers extract 
the most prominent features from 
the input tensors. The dropout layers 
are used to improve the networks’ 
generalisation and to reduce the risk 
of overfitting. The final layer applies 
the SoftMax function, which generates 
class dependency probabilities.

FIGURE 7: ONE OF OUR TRAINED DEEP CONVOLUTIONAL NEURAL 

NETWORK ARCHITECTURES
T and N are the number of look-back days and number of input currencies, respectively. 
The input data is passed through several convolutional, batch normalisation, pooling, 
dropout and dense fully connected layers, while the final decision making is performed 
over the output of the last layer (the SoftMax layer). 

Source: Mesirow Financial
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Conclusions

In this paper, we briefly discussed the limitations of classic 
machine learning-based techniques and challenges in utilising 
neural networks over financial time series. We then explained 
how we addressed those issues to design our deep neural 
network strategy for FX trade sizing. Our fast parallelised 
re-tuning framework enables even daily model re-calibration, 
preparing the networks to learn from the latest data and 
market trends.

In addition to FX trade sizing, our model design paradigm 
can be applied to other applications: asset allocation, market 
volatility analysis, regression, outlier detection, and portfolio 
management – some of which we have already started 
research and algorithm development. Our implemented 
framework facilitates straightforward integration and back 
testing for these applications. As our approach is completely 
data driven, capable of detecting underlying correlations 
between various data modalities, we believe it can also be 
applied to other types of financial time series (e.g. stock 
market data) and allows other data sources, for example 
textual news data, to be easily incorporated.

While this strategy has been part of our live trading platform 
since July 2020, we continuously inspect and analyse the 
performance of our models and actively research more 
advanced neural architectures and machine learning models. 
Our decoupled implementation facilitates fast historical 
back testing, replacing models with improved versions and 
immediate usage of any new model for live trading. 

About Mesirow

Mesirow is an independent, employee-owned financial 
services firm founded in 1937. Headquartered in Chicago, 
with locations around the world, we serve clients through 
a personal, custom approach to reaching financial goals 
and acting as a force for social good. With capabilities 
spanning Global Investment Management, Capital Markets & 
Investment Banking, and Advisory Services, we invest in what 
matters: our clients, our communities and our culture. To 
learn more, visit mesirow.com and follow us on LinkedIn.
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