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High dimensional data visualisation 
for systematic FX trading

Evaluating the effect of training period length on  
the performance of machine learning algorithms
Does more data mean better models? Maybe not for neural network 
systematic FX trading strategies. In this paper, we explain a qualitative 
approach to estimating the optimal look-back window size to create training  
sets for deep neural network-based FX strategies.
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Explaining the problem: class over-representation vs. lack of data dilemma

Machine learning-based systematic FX 
trading algorithms utilise training sets to 
learn optimal model parameters. These 
training sets are usually constructed from 
various time series, sometimes with different 
granularities, and the main training set is 
usually split into several subsets to perform 
training, validation, model selection, and 
(simulated) out-of-sample evaluation.

A common approach to extracting training 
samples from raw sequential data is to 

allocate a (temporal) look-back window 
(LBW) length. To capture the latest market 
trends, these LBWs are usually selected 
to be close in time to the out-of-sample 
period. Different LBW sizes generate 
different training sets with their own specific 
statistical features. In Figure 1 we show daily 
spot FX rates for four (example) currency 
pairs. While the gray area shows the out-of-
sample (test) range, various LBWs (shown 
as yellow arrows) can be used to construct 
different training sets.
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FIGURE 1 | LOOK-BACK WINDOWS (LBWs)
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The captured samples within the selected LBW range 
are then pre-processed and prepared for the next steps. 
Stationarity analysis may be necessary if the statistics 
of the signal change over time. Another step could be 
normalisation: the input signal to a machine learning  
pipeline is usually normalised, which can be an extremely 
important part of its learning performance. 

CONSEQUENCES OF LBWS THAT ARE TOO LONG

The LBW used to construct a training set can have a 
significant effect over the above processes. Windows that 
are too long can create less stationarity, the calculated 
normalisation parameters over such long train sets can be 
irrelevant to the recent data, and thus the performance of 
the following processes in a machine learning pipeline can 
then be severely affected.

For systematic FX trading classification tasks, where each 
sample is labelled as going either long or short, an LBW 
that is too long can increase overlap between classes or, 
rather, overrepresent classes as a result of the intrinsic high 
unpredictability of a financial time series. Longer LBWs 
greatly increase the probability of having similar samples 
labelled to different classes as it is extremely difficult for a 
machine learning task to classify similar samples correctly. 
The resulting FX trading strategies can then underfit and 
generate low training accuracy because they have been 
unable to learn much from the data (a machine learning 
algorithm under-fits when it totally fails to model even  
the training data).

CONSEQUENCES OF LBWS THAT ARE TOO SHORT

A solution for the above issues is to select shorter LBWs,  
for which the resulting training sets can be more stationary 
and generate more consistent normalisation parameters.  
As shorter LBWs correspond to more recent data, they 
enable more immediate market trends to be captured.  
This, however, comes with a price; selecting LBWs that 
are too short reduces the training set size and the risk of 
overfitting increases. 

When the number of training samples is significantly lower 
than the model complexity (which can roughly be estimated 
as the number of free parameters in a machine learning 
model), our overfitting risk increases. A model overfits when 
there is a significant drop in performance between the 
training vs. out-of-sample evaluation and it fails to generalise 
unseen data. Example of complex machine learning models 
are deep neural networks, which can easily have tens of 
thousands of parameters and can quickly overfit when 
trained on small datasets.  

Therefore, to sum up:

1. �An LBW that is too long can create more training 
samples, but, with higher non-stationarity and class 
over-representation, the machine learning models can 
potentially underfit;

2. �An LBW that is too short can generate more stationary 
training sets with lower class over-representation, but can 
also output a much smaller training set, and the machine 
learning models can potentially overfit.

In this paper we address these issues and detail our approach 
to finding the optimal LBW size, utilised as part of Mesirow 
Currency Management’s machine learning pipelines. We will  
explain our “temporal sample weighting” technique to push for  
an even larger LBW, while alleviating class over-representation.  
We first explain how the input data is prepared for the  
systematic FX trading task, we then detail our high dimensional  
FX time series visualisation technique, and, finally, we explain 
how a temporal sample weighting can effectively reduce 
class over-representation when using larger LBW sizes. 
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Data preparation:  
pre-processing and labelling

The performance of most machine 
learning algorithms is highly affected 
by the stationarity level of the input 
signals. First, to make the data 
stationary, a controlled fractional 
differencing operator1 is applied to 
each time series. As shown in Figure 
2 for USDNOK, XEUUSD, USDCAD 
and AUDUSD currency pairs, the 
fractionally differenced signals are 
significantly more stationary than  
the input FX rate. 

We then perform a z-score 
normalisation. To facilitate for the  
trade sizing classification, the triple 
barrier method2 is used to label each 
data sample into going long or short 
(class labels are shown as vertical  
lines in Figure 2). 

Throughout this paper, we assume the 
samples are 1×d vectors;  d=N*T is the 
data dimensionality, N is the number of 
input currencies, and T is the number 
of previous days for each sample. For 
M samples, each labelled as long or 
short, this process constructs an M×d 
matrix. This matrix represents our 
d-dimensional feature space.

FIGURE 2 | INPUT DAILY FX RATES AND THEIR FRACTIONAL DIFFERENCING

  Currency pairs         Fractional differencing         Long class label         Short class label 
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Data visualisation via t-SNE

WHAT IS t-SNE?

Our goals are to visualise the feature space explained in the 
previous section and to reduce the dimensionality from d 
(which can be very high) to 2, thus enabling illustration of  
the M samples over a 2-dimensional plane. 

One way to perform such visualisation would be to use 
principal component or linear discriminant analysis (PCA/
LDA), but, unfortunately, these techniques can fail to 
separate classes as the generated samples from an FX 
sequence are not linearly separable. Also, due to high overlap 
between classes in FX trading problems, non-linear kernel-
based PCA/LDA methods significantly merge samples into 
one cluster, failing a successful visualisation in 2 dimensions.

Alternatively, we can use t-SNE data visualisation. t-SNE  
is a recursive approach to reduce the data dimensionality.3  
It can map the data from a very high dimensional space 
(which is impossible for us to visualise) onto a lower 
dimensional space, facilitating data visualisation on a two-
dimensional plane (Figure 3). The basic idea behind t-SNE 
is that similarity between the samples in any dimensionality 
must be preserved. In other words, similar points should 
always reside close to each other, independent of what 
dimensionality we are in. Therefore, at every iteration, t-SNE 
maps the data onto a lower dimensional space, such that the 
intra-similarity among points is preserved.

FIGURE 3 | MAPPING

High dimensional space Two dimensional space

t-SNE

t-SNE performs mapping from high dimensional space onto lower dimensions, enabling 
a 2-dimensional data visualisation. Each class is illustrated using different markers. For  
a binary classification systematic FX trading problem, we would have only two markers, each  
representing going long or short. 

Source: Mesirow

t-SNE estimates the between-points similarity in a high 
dimensional space as a Gaussian distribution, while in a  
lower dimensional space, it is quantified using a Student’s  
t distribution with one degree of freedom (Figure 4). The  
key objective of t-SNE is to make these two distributions  
as alike as possible, such that the local structure of the data 
is preserved. If two points are too close to each other in a 
high dimensional space, we would want them to stay close  
in lower dimensional space as well. 

This iterative process is performed via an optimisation 
procedure. Using the gradient descent algorithm, the 
Kullback–Leibler divergence (a method of computing 
dissimilarity between two probability density functions 
(PDFs)), constructed using the Gaussian and the Student’s 
t distributions, is minimised. The use of the Student’s t 
distribution, which is more heavy-tailed than the Gaussian 
distribution as shown in Figure 4, facilitates assigning  
higher scores to dissimilar points when mapped onto the 
lower dimensional space, which places them even farther 
from each other. This results in a more distinctive and  
clearer visualisation.

FIGURE 4 | GAUSSIAN AND STUDENT’S T DISTRIBUTIONS
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t-SNE uses Gaussian and Student’s t (with one degree of freedom) distributions to calculate 
between-points similarity in higher and lower dimensions at each algorithm iteration. As 
Student’s t is more heavy-tailed than a Gaussian distribution, it can map dissimilar points 
farther from each other, facilitating a clearer visualisation. 

Source: Mesirow

Unlike PCA or LDA, t-SNE is a non-linear technique. 
Therefore, it can preserve possible non-linearities in the  
final visualisation.
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t-SNE visualisation of systematic 
FX trading datasets

The t-SNE algorithm explained in the 
previous section is used for visualising 
our FX trading dataset. We construct 
several training sets using various 
LBWs, then, to qualitatively evaluate 
the effect of training sample size over 
training samples’ distribution, t-SNE 
is applied to these training sets. The 
visualisation results are shown in 
Figure 5. The dark and light blue circles 
represent samples going short and long.

This figure clearly shows the lack of  
training data vs. class over-representation  
dilemma. When the length of the LBW  
is short (6 months, 1 year or 2 years 
in Figure 5-a, -b and -c), there is 
significantly less class overlap, which 
makes it easier for a classification 
algorithm (such as the neural networks) 
to converge to an optimal loss. This, 
however, comes with the price of 
having fewer training samples, which 
risks the classification model to overfit. 

On the other hand, while longer  
LBWs (4, 8, and 16 years) give a  
greater number of samples, they 
totally overlap the samples from 
different classes, causing class over-
representation (Figure 5-d, -e and -f). 
Using such training sets can make it 
difficult for machine learning algorithms 
to find classification boundaries and  
can cause them to underfit.

In the next section, we explain our 
solution to this dilemma, in order to  
find the optimal LBW value. 

FIGURE 5 | LACK OF TRAINING SAMPLES VS.  

CLASS OVER-REPRESENTATION DILEMMA

A | 6 MONTHS

B | 1 YEAR

C | 2 YEARS

Figure 5 shows t-SNE visualisation of our systematic FX trading feature space labelled via the USDNOK currency pair, for 
various LBW lengths (we have used 5000 iterations and 55 perplexity within the t-SNE algorithm to generate these results). 
Longer LBWs (d, e, f) create higher class overlap, which can potentially result in under-fitting, while shorter LBWs generate 
fewer number of training samples (a, b, c), increasing the risk of over-fitting.

Source: Mesirow

     Long samples         Short samples

D | 4 YEARS

E | 8 YEARS

F | 16 YEARS
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Our solution: temporal sample weighting

From the results in the previous section, we can conclude 
that longer LBWs create lower class separability and shorter 
LBWs create higher class separability. While the latter seems 
to be a better choice for training a classifier, due to its low 
sample numbers, it is more likely to overfit the model. 

To solve this dilemma between class separability and lack 
of data, for a given currency pair, we first perform similar 
t-SNE visualisation in Figure 5 by varying the LBW size. 
From the results, the largest LBW that shows the best class 
separability is selected, and, at the next step, we apply a 
sample weighting process to the resulting training set. 

In machine learning and statistics, sample weighting is a 
technique to assign variable importance to each data point. 
A sample weighted dataset prioritises and/or deprioritises 
some samples over the others, by assigning higher or lower 
importance level to them.4 In our work, we apply sample 
weighting such that more recent samples have higher 
priority. In other words, we assign the importance level to 
each sample based on its start time, and hence, we call it 
temporal sample weighting.

Using these two steps (selecting the longest LBW with 
highest class separability from t-SNE results and temporal 
sample weighting), we can not only make sure the classifier 
receives sufficient samples to minimise the over-fitting risk, 
but we can also capture the latest market trends by assigning 
higher weights to recent samples. 

In our experiments, we use two methods to perform the 
temporal sample weighting: linear and quadratic. These are 
illustrated in Figure 6. Linear sample weighting (shown in 
dark blue) increases the weights based on their index with 
a constant slope. The quadratic sample weighting, however, 
assigns lower weights to farther samples (lower indexed 
samples), while allocating significantly higher weights to  
more recent samples (higher indexed samples).

To generate this figure, we have assumed we have 250 
samples, where higher sample indexes correspond to more 
recent data points.

FIGURE 6 | TEMPORAL SAMPLE WEIGHTING 
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As an example, Figure 7 shows the t-SNE visualisation of 
a linear (Figure 7-a) and quadratic (Figure 7-b) temporally 
sampled training set, labelled using the USDNOK currency 
pair. For both figures, the marker area is proportional to its 
sample weight. Both techniques assign higher importance 
to more recent samples and allocate lower weights to older 
samples. This way, we can utilise a relatively long LBW to 
create large enough training sets while reducing class overlap 
by assigning higher weights to more recent samples. 
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FIGURE 7 | t-SNE VISUALISATION 
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t-SNE visualisation of temporally weighted training sets with 4 years LBW via: (a) linear  
and (b) quadratic sample weighting. The marker area is proportional to its corresponding 
sample weight. More recent samples have higher weights and are depicted as larger.

Source: Mesirow

Conclusions

In this paper, we examined a qualitative approach to estimating  
an optimal LBW size for generating training sets for deep 
neural network-based systematic FX trading strategies. First, 
we explained the lack of data vs. class over-representation 
dilemma. Then, after briefly explaining t-SNE (a well-known 
high dimensional data visualisation technique), we explained 
how this dilemma can be visualised over daily FX data. Finally,  
we proposed a temporal sample weighting solution to not 
only minimise the effect of class over-representation, but 
also to emphasise more recent incoming data, capturing the 
latest market trends. 

This work is totally data driven and easily extendable to  
other financial time series, such as stock market data. In 
addition to FX trading, the proposed approach can also  
be applied to other tasks, such as regression analysis over 
multi-modal financial data and machine learning-based 
portfolio allocation tasks. 

The methodology to find the optimal LBW length is currently 
being used by the deep neural network systematic FX trading  
strategy at Mesirow Currency Management. 

About Mesirow

Mesirow is an independent, employee-owned financial 
services firm founded in 1937. Headquartered in Chicago, 
with locations around the world, we serve clients through 
a personal, custom approach to reaching financial goals 
and acting as a force for social good. With capabilities 
spanning Global Investment Management, Capital Markets 
& Investment Banking, and Advisory Services, we invest in 
what matters: our clients, our communities and our culture. 
To learn more, visit mesirow.com and follow us on LinkedIn.
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